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'runel~en a )roxln"ltlOn IS rec ueCt to t le cXlstence of a lure V vo L111l C-( C )cn ent c Hlraeten ~ tlc 

tcmperature for the vibrational or thermal frec energ of the solid. Thc ana YSIS consists t en 111 a 
searc or temperature rangcs were t lcse restnctlOns on t le unctlOnal form of the free energy, anti 
the restrictions on the form of the internal energy imposed by the Hildebrand approximation, are 
satisficd for a non~mctal in the quasi-harmonic approximation. The main results are as follows: 
(1) At temperature$ somewhat above the Debye characteristic temperature for the (quasi-harmonic) 
high-temperature heat capacity at constant volume, it is appropriate to take as equation of state the 
vibrational Hildebrand equation: (2) at somewhat lower temperatures, this IIildebrand equation is 
generall y more inaccurate than the corresponding Mie-Gruneisen equation; and (3) in the low­
temperature T3 region of the heat capacity, the equation of state reduces to the thermal Mie­
Gruneisen equation. The explicit forms of the vibrational and thermal Mie- Gruneisen equations of 
state, and of their volume derivatives at constant temperature, are reported together with the corre­
sponding Hildebrand equations. Some corollary results are obtained, within the quasi-harmonic 
approximation, on the temperature variation at constant volume of the Gruneisen parameters re­
lating the explicit rolume and temperature dependence of the vibrational and thermal free energy and 
of the entropy of a cubic solid, and (in an Appendix) on the temperature variation of the Debye 
temperatures app opriate to the various thermodynamic functions of any non-metal. The available 
experimental and theoretical evidence on the anharmonic contributions to the thermodynamic 
functions of solid~ is briefly discussed, and points to the conclusion that their weight is quite small in 
the region of temperature of interest for our analysis. 

I 
1. INTRODUCTION 

THE FORMULATION of the equation of a state of a 
cubic solid under hyd~ostatic pressure which is 
commonly adopted to Idetermine the volume de­
pendence of the lattice energy of the solid from 
empirical data is based either on the Hildebrand 
approximation (2) or on the Mie- Gruneisen approxi­
mation. (3) In recent years, it has been tacitly 
assumed that the Mie-Gruneisen equation of state, 
which takes approximate account of the explicit 
volume dependence of the (vibrational or thermal) 
free energy of the solid, is a better formulation to 

• Based on work perfoJmed under the ~uspices of the 
U .S. Atomic Energy Cdmmission. A brief report of 
this work ha9 .been given in Ref. (1). 
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use than the Hildebrand equation of state, which 
neglects the explicit volume dependence of the 
(vibrational or thermal) internal energy of the solid. 
In effect, HUANG(4) took the Mie-Gri.ineisen 
equation of state as equation of reference in analyz­
ing the validity of the Hildebrand equation. The 
same attitude is implicit also in some calculations 
of BORN and HUANG(5), who have adopted the 
vibrational Mie-Gri.ineisen equation of state, and 
an approximation to its volume derivative at con­
stant temperature, to recalculate the parameters 
entering the Born expression for the lattice energy 
of the alkali halides from empirical data at room 
temperature and atmospheric pressure. More re­
cently RICE et al. (6) have derived the P-V isotherm 
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at OaK for a number of metals from their shock­
wave compression data by adopting the thermal 
Mic-Griineisen equation of state, in an approxi­
mation proposed by DUGDALE and MACDoNALD, 
as the equation of state appropriate above room 
temperature. BENEDEK(?) has used, instead, the 
vibrational Mie-Griineisen equation of state, with 
the Griineisen parameter y taken as a constant, to 
deduce from those data the volume dependence 
of the lattice energy of some metals, neglecting 
the electronic contribution to the vibrational free 
energy at room temperature and zero pressure. 

Here we will investigate systematically the con­
ditions under which the cquation of state of a 
cubic solid, subject only to hydrostatic pressure, 
reduces to the form givcn by either the Mie-Grlinei­
sen or. the Hildcbrand approximation. General 
thermodynamic arguments, which extend previous 
work of BORN(S), GRUNEISEN(3) and DAVIES(9), lead 
one quite easily to express the condition of validity 
of the vibrational or thermal formulation of the 
Mie-Griineisen approximation as a I restriction on 
the form of the vibrational or thermal free energy 
of the solid as a function of its volume and tem­
perature. One ean the" show that the experimental 
observation, for a given solid, of a Griineisen para­
meter y which does not depend on Item perature at 
constant volume in a certain range /of temperat~re 
and volume does not ensure, in general, the 
validity in this range of either foim of the Mie­
Grlineisen equation of state. Tpermodynamics 
does not allow one, instead, to establish whether 
the special functional form of thcl vibrational (or 
thermal) free energy, which expresses the Mie­
Griineisen approximation, is more or less re­
strictive than the special functio'nal form of the 
vibrational (or thermal) energy' iwhich expresses 
the Hildebrand approximation. Some general 
results on the validity of these various functional 
restrictions can be obtained within the quasi­
harmonic approximation to the statistical mechanics 
of a non-metal, both at the low temperatures where 
only long-wave acoustic modes are thermally 
excited, and in the temperature range of converg­
ence of the THlRRING--STERN(lO) ~xpansions for the 
thermodynamic functions, co~pleting, p~evio~s 
work of BORN(ll) and BARRON(l2.13). Wlthm thIs 
approximation, the vibrational Mie-Griineisen 
equation of state and the cor~esponding Hilde­
brand equation are. both strictly valid only at 

temperatures where the heat capacity at constant 
volume has attained its classical value, but at some­
what lower temperatures the former can be ex­
pected to be less inaccurate than' the latter. 
Furthermore, within the temperature range of 
convergence of the Thirring- Stern expansions, 
the independence of y from temperature at con­
stant volume does ensure the validity of the 
vibrational Mie-Grlineisen equation of state. The 
thermal Mie- Griineisen equation, instead, is the 
rPpropriate equation of Rtate for a non-metal in 
the T3 region of the heat capacity. At moderate and 
high temperatures, the thermal Mie-Grlineisen 
and Hildebrand equations are less accurate than 
the correponding vibrational equations, and they 
become valid only if the zero-point energy of the 
solid becomes ne Ii ible com ared to its thermal 
energy, so that the two each 
approximation coincide. 

2. THERMODYNAMIC DISCUSSION OF THE 
MIE- GRUNEISEN AND HILDEBRAND APPROXI­

MATIONS 

The equation of state of a cubic solid subject 
only to hydro' Latic pressure, P = -(OF/OV)T, can 
be written alternatively in the so-calle 1 vibrational 
and thermal formulations (see, e.g., BENEDEK(?) and 
BARRON(l2). These correspond, respectively, to 
splitting the Helmholtz free energy of the solid 
F(V,T) into the energy of the static solid of volume 
V in its electronic ground state [the lattice energy 
W L( V)] plus a "vibrational" free energy F Vib( V, T), 
or into the non-thermal energy [the cohesive 
energy Wc(V) of the solid of volume Vat OaK] 
plus a "thermal" free energy Fth(V,T). The 
free energies Fv1b(V,T), Fth(V,T) involve, of 
course, the vibrational and thermal energies of the 
solid WVih(V,T) and Wth(V,T), and the total 
entropy S(V,T). We write the equation of state in 
these two completely equivalent formulations in a 
form which, though seemingly unduly elaborate, is 
particularly well suited for the subsequent ther­
modynamic discussion: 

dWL " Wvib 
P+- = y -- (la) 

dV V 

V [o(Fv1b/T)/oV]T 
y'(V,T) = T [O(Fvlb/T)/oT]v (lb) 
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and 

dWo Wtb 
p+- = y" - (2a) 

dV V 

" V T = V [a(FtlJ/T)/aV]T 
y ( ,) T [a(Fth/T)/aT]v' (2b) 

The Grtineisen parameters y' and y" differ, in 
general, from the parameter y defined by the 
Grtineisen relation: 

V (as/aV)T Vfl 
y(V,T) = T (as/aT)v = CvK (3) 

where fl, K and Cv are the coefficient of volume 
thermal expansion, the isothermal compressibility 
and the heat capacity at constant volume of the 
solid. 

The vibrational formulation consists in replacing 
y' in equation (1 a) by y. Similarly, the thermal for­
mulation of the Mie-Grtineisen approximation 
replaces 1''' in equation (2a) of the Mie-Grtineisen 
approximation by y. This is permissible in a certain 
range of temperature and volume when and only 
when 1", or 1''', does not depend explicitly on tem­
perature in such a range, as is apparent from the 
equations 

(Oy') C ' 
aT v = WV:b (y-y') (4) 

~ = _v (y_y") (a ") C 
aT v Wth 

(5) 

\vhich re-express the temperature ,derivative of 
the I'!quation of state at constant volume by means 
of the thermodynamic identity (8PI8T)v = fllK. 
This leads at once to the thermodynamic expres- ' 
sion of the two formulations of the Mie- Grtineisen 
approximation, namely to the restrictions on the 
functional form of the thelmodynamic functions 
of the solid which represent necessary and sufficient 
conditions for the validity of these formulations in 
a given range of temperature and volume. Indeed, 
the integration of equations (lb) or (2b) under the 
condition that 11", or 1''', pe a function only of the 
volume of the crystal in a certain temperature 
"nge l"d, tol the fOllling function'" fonn fo, 

I 1 

e ' _ , " ~ 

the vibrational free energy of the solid: 

Fv1b(V,T) = Tf(T/0'(V» (6a) 

or for its thermal free energy 

'Fth(V,T) = Tf(T/0"(V»). (7a) 

Here f denotes an arbitrary function, while 
0'(V) and 0"(V) are general characteristic tem­
peratures, subject only to the restrictions 

dln0' 
y'(V) = ---- (6b) 

dIn V 

din 0" 
y"(V) = 

dIn V 
(7b) 

The conditions (6a) and (7a) are clearly less re­
strictive than the Debye model. It should also be 
stressed that the restrictions (6) and (7) are not, in 
general, thermodynamically equivalent, and thus 
the vibrational and thermal Mie-Gruneisen 
equations of state are not alternative formulations 
of the same equation, contrary to equations (1) and 
(2). BORN(S) had already shown, by a different pro­
cedure, that for an Einstein solid with frequency 
v the validity of the vibrational Mie- Grtineisen 

. equation of state implies that the vibrational free 
energy has the form Tf[Tlv( v)], while GRUNEISEN(3) 
had pointed out that this equation follows from 
the assumption that the vibrational free energy 
has the form (6a). 

The thermodynamic expression of the condition 
that y be a purely volume-dependent function in a 
certain range of temperature is similarly Obtained 
by integrating equation (3). This leads to the 
following functional form for the entropy of the 
solid: 

S(V,T) = S(T/0(V» (8a) 

dln0 
y(V) = 

dIn V 
(8b) 

implying that whenever y does not depend on 
temperature at constant volume, it measures the 
logarithmic derivative of a purely volume-de­
pendent characteristic temperature for the entropy. 
Condition (8a) is less restrictive than conditions 
(6a) and (7a), since when the vibrational or thermal 
free energy is of the form (6a) or (7a) in a certain 

----
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range of temperature and vol me, the ~ntropy is Thermodynamically, the validity of the Hilde­
of the fonn (8a) with 8(V) = 8'(V) or 8(V) = brand restrictions on the vibrational or thermal 
8"(V) [and the heat capacity at constant volume 

_depends only on the ratio TI8(V)], but the con­
verse is not necessarily true. This implies that the 
it/depende7lce of y from temperature at constant 
volume for a givm solid itl a certain ral1ge of tem­
perature alld volume, established by lIICatlS of measure­
me1lts of f3, C y alld K, does not guarat/tee, in general, 
the validity itl the same range of either formulation 
of the Mie-Griitleisen approximation. However, if 
the entropy has the forr. (8a) in a temperature 
range from OOK upwards, or if the heat capacity at 
constant volume has the form Cy(V,T) = 
Cv(TI8W» in such a range and the / entropy of 
the solid at OOK is a constant, the thermal free 
energy has the form (7a) in the same 'range, with 
8"(V) = 8(V). DAVIES(O) had alreadYt,pointed out 
that if the heat capacity at constant v lume has a 
purely volume-dependent characteris ic tempera- . 
ture in a temperature range including the absolute 
zero, and Nernst's theorem applies, y and y" are 
both given by the logarithmic derivative of this 
characteristic temperature. I 

energy of a solid in a certain range of temperature 
and volume does not ensure the validity in the 
same range of the Mie-Grtineisen restrictions on 
the corresponding free energies, nor vice versa. 
In particular, the validity of equation (9) in a range 
from To(V) to a running T implies only that 
Fvlb(V,T)IT is the sum of a function of the tem­
perature and a function of the volume, while the 
validity of equation (6) implies only that WvJb( V, T) 
= Tg(TI8'(V» 'ith g(x) = -x(dfldx). Thus, , 
ingmeral, one has no thermodynamic reason.o prefer 
either the Mie-Griilleism or the Hildebrand approxi­
mation. One can, on the other hand, establish 
thermodynamically the equivalence of the two 
approximations in a range of temperature and 
volume where ' the vibrational or thermal energy 
of the sqlid depends only on temperature, and in 
a linear way, and the vibrational or thermal free 
energy has the functional form T In (TI8(V», 
since either restriction follows from the other. 

3. THERMODYNAMIC FUNCTIONS AND 
GRUNmSEN PARAMETERS OF A CUBIC 
NON-METAL . IN THE QUASI-HARMONIC 

APPROXIMATION 

The vibrational and thermal formulations of the 
Hildebrand approximation are traditionally ex­
pressed through the restrictions that they impose 
on the functional form of the internal' energy Wof To discuss the validity of the functional restric­
the solid: these read I " tions on the thermodynamic functions of a cubic 

solid under hydrostatic pressure which express the 
W(V,T) = WL(V)+ WVlb(T) (9) Mie- GrUneisen and Hildebrand approximations, 

I one must resort to the statistical mechanics of the 

and 

W(V,T) = Wc(V) + Wtb(T) (10) 

respectively. These restrictions a e completely 
equivalent to assuming that y' and ~" are related 
to y by the equations . I 

Wviby'(V,T) = TCvy(V,T) (11) 

. I 
Wtby"(V,T) = TCvy(V,T) (12) 

The vibrational and thermal Hildebrand equations 
of state, obtained from equations (la) and (2a) by 
using equations (11) and (12), respe~tively, are not 
alternative formulations of the same ~quation, since 
the restrictions (9) and (10) are 110t, in general, 
thermodynamically, equivalent. 

solid. We restrict ourselves to cubic non-metals, for 
wbich it is plausible to adopt the adiabatic approxi­
mation and to neglect the electronic contributions 
to the vibrational parts of the thermodynamic func­
tions. In addition, we treat the lattice contributions 
by the quasi-harmonic approximation: namely, we 
assume that these contributions, taking the (con­
stant) entropy of the solid at OOK as the zero for the 
entropy, arc given by the thermodynamic functions 
of an assembly of uncoupled harmonic oscillators, 
whose frequencies depend only on the volume of 
the solid. The quasi-harmonic approximation has 
been used quite commonly in recent years in 
studies of thermodynamic properties of solids (see, 
e.g. Refs. 12-18), and, for our purposes, it has the 
merit of allowing a general analysis of the func­
tional forms of the them10dynamic functions 
without the adoption of particular force models. 

- .-
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dynamic unctlOl1S, estimates 0 W Hch 
have recently been undertaken for some simple 
force models, (~9,20) but the available evidence, to 
be discussed id Section 5, suggests that these con­
tributions are I unimportant in the temperature 
range of utmost interest for our analysis. 

A general c~nsequence of the quasi-harmonic 
approximation is that, at temperatures sufficiently 
close to the absolute zero, the heat capacity at 
constant volume of a cubic non-metal is simply 
proportional to [T/0D(v)J3, where 0D(V) is the 
elastic Debye characteristic temperature. At some­
what higher temperatures, however, the (quasi­
harmonic) heat capacity contains additional terms 
in higher odd powers of T, originating from the 
dispersion of the acoustic modes and involving 
each the ratio between the absolute temperature 
and a purely volume-dependent characteristic 
temperature appropriate to the term and generally 
different from 0D(V). (17) This result, when com­
bined with the thermodynamic theorem involving 
the heat capacity given in Section 2, allows one to 
state that tfte T3 region is, ill general. tire only 1070-
tem eraillre re i071 where the thermal or1lluldtion 
o tire Mie-Grii71eisell a rox i1llatio71 is valid alld 
where y does 1I0t depend explicitly all tem.perature. 
BORN(1l) and BARRON(l2,13) had already pointed out 
that in the T3 region y and y" are both given by 
the logarithmic derivative of 0D(V). The vibra­
tional orllllllatioll a the Mie-Griineisen approxima­
tion, instead, is not va /, 11l t Ie reglOn, contrary 
to what was assumed by HUANG(4), since the 
vibrational free energy could have the form (6a) in 
this region only if the zero-point energy were 
simply proportional to 0 n(V); namely, if the 
Debye form for the vibrational spectrum were 
appropriate for the entire vibrational spectrum of 
the solid. Finally, the Hildebrand approximation 
for the thermal or vibrational energy is clearly not 
valid at low temperatures . 
• Another general consequence of the quasi­
harmonic approximation for a cubic non-metal, 
pertinent to the region of moderate and high tem­
peratures where the Thirring-Stern expansions of 
the thermodynamic functions converge, is easily 
established by inspection of these expansions, 
which are given in the Appendix. This is that the 
vibrational energy becomes explicitly independent 

• I 

of volume and the vibrational free energy takes the 
form (6a) only at temperatures somewhat above the 
Debye characteristic temperature O2( V) for the 
high temperature heat capacity at constant volume, 
where they approach, respectively, 3kT per particle 
and the high temperature Debye function al form 
TIn [T/0o(V»). On the other hand, the thermal 
energy per particle approaches 3kT, and thc ther­
mal free energy approaches the high temperature 
Debye functional form, Tin [T/0o(V)], only at 
the significantly higher temperatures where the 
zero-point energy per particle is negligible com­
pared to 3kT. These results, when combined with 
the thermodynamic theorem givcn in Section 2, 
connecting these particular functional forms for 
the energies and free energies, lead one to the 
following conclusions : (1) Tire v ibrational for1llula­
tiOIl of tire Mie-Griineisen approx i1llation becolllcs 
valid in leneral when and ani when the v ibratiollal 
energy per particle approaches 3k T , lIalllely, 7U l en 

fJ.nd only wizen the H ildebrand approxi1l1ation for tire 
vnn' fltiol1 al enen!v beco111es valid; and (2) tire thermal 
formulation of the M ie-Griineise1/. approximation 
would ge llc l'ally become valid in the h~qlz-tcl/lpel'at/lre 

ltl!ion only at the very high temperatures, hardly ever 
attained by a solid, zvhere the Hildebrand appro.u'­
mation or the thermal ener becomes valid. BOI1N(1) 
indicated long ago that Y IS a unctIOn on y 0 t le 
volume of the solid in the temperature range where 
the law of Dulong and Petit is obeyed, and 
BARRON(2) has pointed out that for T --* co, Y" 
and y approach a common value given by the 

.logarithmic derivative of the Debye characteristic 
temperature for the entropy for T --* co. BARRON'S 
calculations(12) of the temperature variation at con­
stant volume of y and y" for a particular quasi­
harmonic model, a face-centered cubic solid with 
central forces between nearest neighbors, provide 
also an illustration of the general result, implicit in 
(1) and (2), that y" approaches the COI/IIIIOll limit, 
Yoo' of the ys at high temperatures more slowly 
than y . . 

In the region of intermediate temperatures, 
where the Thirring-Stern expansions converge 
but the vibrational energy per particle has not yet 
attained the value 3kT, the validity of the Hilde­
brand approximation for the vibrational energy 
requires that the pertinent even moments {-L2n of the 
frequency distribution of the normal modes of the 
solid be independent of the volume of the solid. On 

r 
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the other hand, the validity of the, Mie- Grii,wisen 
approximation for the vibrational free energy, as 
well as the condition that y be ~ purely volume­
dependent function, require onl~ that the volume 
dependence of the roots (i-L21l)1/21~Of the pertinent 
even moments of the vibrational spectrum be the 
same as that of the geometric mea s of the normal­
mode frequencies, a less restrictite condition than 
the validity of the Debye functi r nal form for the 
vibrational free energy (see ApIlendix). The cor­
responding conditions for the va~idity of the ther­
mal formulations involve als0f,the moment [Ll. 

Clearly, one cannot make any ge eral statement on 
the actual validity of either f rmulation of the 
Mie-GrUneisen or Hildebrand approximation, 
but one has some reason to expect either formulation 
of the Mie-.GriilleisclI approximation to be less in­
aCCllrale than the corresponding ifor1llulalio1t of the 
Hildebralld approximatio1L in tho regioll of moderate 
tcmperatures. One can also state that withi7l the region 
of convergellce of the Thirring-Slem expansio71s, the 
tempel'Qlure ranges ill which y a~ld ')I' do 1lOt depend 
OIl temperature at COIlStant volil11le coi71cide. Thus 
the calculations of the te't perature variation 
at constant volume of the parameter ')I fqr 
'simple quasi-harmonic models of rare-gas solids, 
performed by BARRON(12) and by HORTON and 
LEEC}(US), which show that in these cases y re­
mains practically constant down to temperatures" 
of the order of one third of the Debye character­
istic temperature, do confirm, that in these cases 
the vibrational Mie-Gruneisen approximation is 
in fact less inaccurate than the vibrational Hilde­
brand approximation at these temperatures. 

The Thirring-Stern eXPaI~sions for the entropy 
and the vibrational free energy allow one also to 
show that the rates of approactl of y and y' to Yeo are 
equal in absolute value but opposite i7~ sign. This 
result, together with equation (4), allows one to 
predict that for any model for which y increases 
monotonically with temperhture from OOK up­
wards (and in which one neglects the effect of ther­
mal expansion on the vibrational frequencies), as is 

- the case, for example, for most of the quasi-har­
monic models of rare-gas solids treated by 
BARRON(2) and by HORToN land LEECHClS), y' will 
be larger than Yeo and will increase steadily with 
decreasing temperature down to OOK, where 
(ay' aT)v must vanish. One can envisage this result 
" • p"ticui.dy drnm.tic ilTt"tion of the gen"'ol 

1 

-.,_ .. '-

resllit that ')I' differs from ')I at very low tem­
peratures. 

A condition for the validity, within the qllasi ~ 

harmonic approximation, of both formulations of 
the Mie-Gruneisen approximation over the entire 
range of temperatures has recently been given by 
BLACKMAN(14), If one rewrites the quasi-harmonic 
expressions 

and 

, "" d In Vi (j) 
Y = - ~ --- W\'ibjWv1b 

i dIn V 

" 2 d In Vi (j) 
Y = - -- WLhlWth 

j d In V 

in integral fonn, it is in cffeet apparent that the 
condition in question is that the arithmetic average 
of din vjd In V f01: all vibrations lying between 
V and v+Llv be a constant, independent of the 
frequency. This is clearly more restrictive than 
the conditions for the validity of either formula­
tion of this approximation at intermediate tem­
peratures, that we have given above. 

4. THE MIE-GRUNEISEN AND HILDEBRAND 
EQUATIONS OF STATE • 

. The formulations (1) and (2) of the equation' 
of state of a cubic solid under hydrostatic pressure, 
and their first volume derivatives at constant 
temperature: 

.1 d2WL y'2 , 
--+ V-- = - (TCv- Wv1b ) 

K dV2 V 

+y' Wvlb [~ (ay,) + T(a')l') -lJ (13) 
V y av T aT v 

1 d2W "2 
--+ v __ C = ~ (TCv- Wth) 

K dV2 V 

+y" Wth [~(~). + T(OY") -lJ 
V y" av T . aT v 

(14) 

can be easily reduced to the special forms appro­
priate 111 the Mie-Gruneisen and Hildebrand 
approximations. One uses the Mie-Gruneisen and 
Hildebrand approximations to y'(V,T) and 
'y"(V,T), together with the thermodynamIc 

, 
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expressions of (Oy/8V)T and (8y/8T)v, 

( a
y

) y y (aCV) 
av T = V - Cv oV T 

+ C:J(2 [G~t +; G:) J (15) 

Cy
) V ( aCV) y ( aCV) 

aT v = TCv av T - Cv aT v 
(16 ) 

which follow from equation (3), the first one by 
transforming [8(fJ/K)/OV]T into pressure deriva­
tives at constant tcmperature, noting then that 
(of3/0P)T = -(8K/8T)p. In the vibrational for­
mulation of the Mie-Gruneisen approximation, 
the resulting equations have the form 

dWL Tf3 Wvlb 
P+-=---

dV K TCv 
(17) 

I 
I 

1 d2WL 
--+V--

K dV2 

Vf32 [TCV I T (OCY) ] 
=C~K2WVII wVlb- i - cv oT v 

Wvlb T [(OK) ' f3 ( OK) ] . 
+TCv K2 oT p'+K oP T ; 

(18) 

while in the thermal formu~ation they read 

, dWc Tf3 Wth 

P+-;w- = -l-r' . TCv 

1 d2Wc 
--+V-' -

K d~ 

(19) 

V(32 [TCV I T (OCY) ] 
= C~J(2 W th Wth / 1- Cv oT v 

+ Wth 2 [(O~) + ~ (ax....) J. (20) 
TCv J(2 oT I p K OP T 

In the corresponding fohnulations of the Hilde­
brand approximation, th~y are instead: 

I 
P+ dWe = Tf3 

d~ K 
(21) 

_~+ VdZWL = .!.... [(OK) +~ (CK) ] 
K dV2 J(2 oT p K oP T 

and 

dWe Tf3 
P+-=­

dV K 

(22) 

(23) 

1 d
2
Wc T [(OK) f3 (OK) ] 

.~ K + V dV2 = J(2 aT p + K ap T. 

(24) 

HUANG(4l assumed equations (17) and (19) as 
yalid at all temperatures and attempted to investi-. 
gate the validity of the Hildebrand approximation. 
for a non-metal by searching for temperature 
ranges where equations (21) and (23) coincide. 
with equations (17) and (19), respectively, com-, 
puting the ratios Wvib/TC v and Wtll/TCV by. 
means of the Debye model. Clearly this procedure 
does not establish the relative merits of the 
Hildebrand and Mie-Gruneisen approximations. ­
Thus HUANG'S result that the ratio Wvib/TC r_ 
approaches unity at temperatures somewhat above 
the Debye characteristic temperature, while the 
ratio Wth/TC v approaches unity only at much 
higher temperatures, represents only a numerical 
verification :Jf the Debye model of the general 
result to this effect which is apparent from the 
Thirring expansions for the vibrational and 
thermal energies. BORN and HUANG(5), on the 
other hand, have used equation (17) for the 
alkali halides at room temperature, adopting, how­
ever, an approximate expression for its volume 
derivative at constant temperature derived by 
neglf'~ting the volume dependence of y. 

5. DISCUSSION OF THE RESULTS 

A few definite statements on the validity of the 
Mie-Griineisen and Hildebrand approximati0ns 
to the equation of state of eubic solids UT' ler 
hydrostatic pressure are possible within the quasi­
halIDonic approximation. The thermal Mie­
Griineisen e uation of state is correct tor a non- . 
metal in the T3 reglOn 0 t e eat capaCity, ana. 
the validity of the Debye model for the thermal 
thermodynamic functions in this reglOn, which 
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imp! ie~ that 

Tel' = 1 +~ ( BCv) = 4, 
Wlh Cv aT v 

ensures a welcome simplification of the form of 
this equation, and of its volume derivative at con­
stant temperature. At temperatures somewhat 
above the Deb 'e characteristic temperature 
00 V for the uasi-harmol1lc heat ca ac!ty at 
high temperature! the appropriate equatIOn 0 

state is the vibrational Hildebrand e~uation, 
which has of c Jrse the advantage that Its use, 
\1ncl that of its volume derivative, oes not re­
quire the knowledge of the vibrational energx 
of the solid as a function of temperature and 
volume. At somewhat lower temperatures, the 
vibrational Mie-GrUneisen equation is the appro­
priate equation of state for solids in which y is 
essentially a purelv volume-dependent function 
£t these temperatures; however, the use of this 
equation, and of its volume derivative! does require 
the knowledge of the vibrational energy of the 
solid W ' ih V T and this has the Deb e func­
tional form with O2(V) as the Debye c 1aracter­
istic temperature in the temperature region where 
its Thirring expansion can be truncated after the 
T-2 term (see Appendix). One may also add that 
the thermal Mie-GrUneisen and Hildebrand 
equations involve generally greater :.rrors than 
the corresponding vibrational equations when 
used at the same temperature in the region of 
moderate temperatures. The various statements 
pertaining to moderately high temperatures can 
be assumed to apply to metals, as well as non­
metals, since at these temperatures the electronic 
terms in the vibrational thermodynamic functions 
of the solid are generally small compared to the 
lattice terms. 

The applicability of these. quasi-harmonic 
results to a particular solid depends naturally on 
the weight of the anharmonic contributions to its 
thermodynamic functions in the various ranges of 
temperature and volume. The available experi­
mental evidence indicates that in the region of 
tempcrature around and below O2 the anharmonic 
~ontributions to the thermal thermodynamic. 
,functions are quite small in a number of solids .. 
Quite accurate evidence to this effect llas been. 
provided by BARRON et a~,(2l), who haJe shown. 

that the weight of the anharmonic contributions 
to the heat capacity at constant volume of various 
alkali halides at atmospheric pressure is still less 
than 1 per cent at temperatures around 02. 
SALTER(16) has also pointed out that the entropy of 
copper and aluminum at atmospheric pressure re­
mains apparently quasi-harmonic at least up to 
3000K, since it has essentially the functional form 
In (TI0) in the temperature range from about 
2000K to at least 3000K. An analogous test for 
sodium, using the data reported by MARTIN(22), re­
veals that the logarithmic functional form for the 
entropy at atmospheric pressure applies in the 
range extending roughly from lOOoK to 200°K. On 
the other hand, an analysis of the available calcula­
tions of the anharmonic contributions to the vibra­
tional thermodynami~ functions, which concern 
simple force models of a linear chain of a face­
centered cubic solid, (19) shows that the contribu­
tions to the vibrational free energy at temperatures 
around and somewhat below the appropriate 0s 
are at most comparable to the contributions 
to TCv. Under these conditions, the characteristic 
temperature for the logarithmic term of the 
vibrational free energy is affected by the anhar­
monic terms only by a percentage comparable to 
their fractional weight in the heat capacity. 

In the temperature range where the entropy of 
'a solid has the functional form In [TI0(V)], y 
must of course be a purely volume-dependent 
function, and one would actually expect y not to 
vary significantly with temperature also at some­
what lower temperatures, where the following 
terms of the Stern expansion of the entropy are 
still small and a different volume dependence of 
the characteristic temperatures appropriate to the 
various terms of the expansion (see Appendix) is 
hardly detectable. These expectations are con­
firmed by the measurements of BIJL and PULLAN (23) 
which show that in copper and aluminum y at 
atmospheric pressure does not vary with tempera­
ture in the range from 273°K to below lS0°K. For 
sodium, one anticipates that y at atmospheric 
pressure should not vary with temperature in the 
range extending roughly from 2000K to lOO°K. 
An experimental verification of this prediction, 
when compared with the observation (24) that y" 
for sodium depends explicitly on temperature in 
this range, v.:ould provide also a verification of the 
quasi-harmonic theorem that y" approaches the 
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limiting high tcmperature value of the ys more 
slowly than y. /Of course this theorem leads one 
further to anticipate that y" ' for copper and 
aluminum should not be independcnt of tem­
perature in th1 entire range in which this holds 
for y. For the 1alkali halides for which BARRON 

et al. (21) have ;proved the accuracy of the quasi­
harmonic approximation to the thermal thermo­
dynamic functions at moderate temperatures, one 
would again expect that y at atmospheric pressure 
should not vary significantly with temperature in 
a region around and below the pertinent O2• The 
measurements[ of RUBIN et aI. (25) prove that this 
is true for sodIUm chloride. 
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APPENDIX 

The Quasi-Harmonic Approximatioll at Moderate Tem­
peratures and the Debye Model 

At temperatures above hVm/21Tk, where Vm is the 
highest vibrational frequency of the solid, the thermo­
dynamic functions of a quasi-harmonic non-metal are 
represented by their Thirring-Stern expansions(IO) In 

inverse powers of the absolute temperature: 

(A.l) 

s . [h ] -- = -In _(TIVj)1/3N 
3Nk kT j 

+1- ~ (-l)n---- - J.L2n 
ex:> . B2n 2n-l ( h )2n 

6. (2n)! 2n kT 
(A.2) 

ex:> B 2n ( It )211 -6 (-l)n (2n)! kT J.L2n (A.3) 
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00 21 -l l( It )2n on the other hand, the appropriate Debye character-
"" (-1)" B2 _l__ __ /L2 istic temperatures for the (vibrational and thermal) 
~ II (21l) I llT 11 free energies and for the vibrational energy coincide, 

c" 1+ 
3Nh 

n-1 respectively, with those for the entropy and for the 
(AA) heat capacity. Numerical values of these 0s for some 

alkali halides, referred to the volwne at OOK and atmo­

Here the Bs are the Bernoulli numbers(2G) and 
I-'n = 7 v~/3N is the IIlb moment ofl the frequency 

distribution of the 3N normal modes of the solid and 
depends only on its (homogeneous) strain state. The 
eJ.'Pansion of the thermal free energy, whence the other 
expansions follow straightforwardly, is obtained quite 
easily by integration of the Taylor expansion of the 
function d/dx{1n[(l-e-"') /x]}, and this involves the 
Dernoulli expansion(26) of the function x/(l-e-"'), which. 
converges for Ixl < 211. The region of convergence of 
the Thirring-Stern expansions extends to below 800 K 
even for a value of Vm equal to 1013 sec-I. 

Each term of the Thirring-Stcrn expansions is a 
function of the ratio between the absolute temperature 
and an appropriate (purely strain-depende'nt) charac­
teristic temperature. We define the characteristic tem­
perature appropriate to the logarithmic term of the 
entropy, 00, and the characteristic temperature for the 
term of the expansions containing the nIb moment of the 
frequency distribution, 0 n, as follows:; 

spheric pressure, are given in the paper by BARRON 
et ol.l21); e.g. for potassium iodide one has 
00 = 142'8°K, 0 1 = 1S2 '9°K and O2 = 162·S°K. 
The experimental Debye temperatures, obtained by 
fitting the appropriate Dcbye formulae to the measured 
values of the entropy, thermal energy and heat capacity 
of a non-metal, will not actually tend to 00, 0 1 and O2 at 
high temperatures, owing to the presence of anharmonic 
contributions. However, while these affect the experi­
mental Debye temperature for the heat capacity by a 
percentage much larger than their fractional weight in 
the heat capacity, as BARRON et 0[,(21) have dramatically 
illustrated for some alkali halides, they affect the 
e}':perimental Debye temperature for the entropy only 
by a percentage comparable to that fractional weight. 

At lower te~peratures, where several strain-depend­
ent terms of the Thirring-Stern expansion of a given 
thermodynamic function are relevant, the Debye tem­
perature appropriate to this function, determined by 
fitting the truncated Debye expansion to the truncated 
Thirring-Stern expansion, will depend explicitly on 
temperature whenever the values of the characteristic 
temperatures pertinent to the relevant terms of the 

(1) h I 
00 = exp - - (II Vj 1/3N 

3 k f 

(
1l+3)1/n h 

(A.S) Thirring-Stern expansion are numerically different, 
because the relative weights of these terms change with 
temperature. DOMD and SALTER(1.) have expressed this 
temperature dependence for the Debye temperature for 
the heat capacity analytically, as an expansion in inverse 

0 11 = -- - p.~n/(" = 1,2,4,6, ... ) 
. 3 It I 

This choice of the numerical factors, which are a priori 
arbitrary, ensures that when all these characteristic 
temperatures are taken as equal the expansions (A. I ) to 
(A.4) reduce to the well-known Debye ell.'Pansions. 

(A.6), powers of the absolute temperature, and analogous 
expansions can be easily obtained for the Debye tem­
peratures pertinent to the other thermodynamic func­
tions. These expansions are of course different for 
different thermodynamic functions, and should repre­
sent rather accurately the temperature dependence of 
the experimental Debye temperatures for the various 
functions in the region of relatively low temperatures. 
As yet, this has been shown to be the case only for the 
DOMD and SALTER expansion.(21) A final remark, of 
some interest, IS that even if the numerical values 
of the characteristic temperatures (A.S) and (A.6) 
pertinent to the relevant terms of the Thirring-Stern 
expansion of a given thermodynamic function are differ­
ent, so long as their strain dependence is the same, the 
function depends only on the ratio between the absolute 
temperature and a unique (purely strain-dependent) 
characteristic temperature, but the dependence on this 
variable is not of the Debye form. 

For each thermodynamic function there is clearly a 
high-temperature region, generally of ,different width for 
different functions, where only the leading strain-de­
pendent term of its Thirring- Stern expansion is relevant. 
Thus the correct quasi-harmonic express ion coincides 
with the Debye expression at these jclassical or nearly 
classical temperatures. However, the appropriate Debye 
characteristic temperatures for the entropy and for the 
heat capacity are different (see, for /example, Ref. 12) 
and differ also from the one appropriate for the thermal 
energy, being given by 00, 0 a and 0 1 respectively; 
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